Negative results on acyclic improper colorings
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005).

Voir la notice de l'article provenant de la source Episciences

Raspaud and Sopena showed that the oriented chromatic number of a graph with acyclic chromatic number $k$ is at most $k2^{k-1}$. We prove that this bound is tight for $k \geq 3$. We also show that some improper and/or acyclic colorings are $\mathrm{NP}$-complete on a class $\mathcal{C}$ of planar graphs. We try to get the most restrictive conditions on the class $\mathcal{C}$, such as having large girth and small maximum degree. In particular, we obtain the $\mathrm{NP}$-completeness of $3$-$\mathrm{ACYCLIC \space COLORABILITY}$ on bipartite planar graphs with maximum degree $4$, and of $4$-$\mathrm{ACYCLIC \space COLORABILITY}$ on bipartite planar graphs with maximum degree $8$.
@article{DMTCS_2005_special_250_a50,
     author = {Ochem, Pascal},
     title = {Negative results on acyclic improper colorings},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3441},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3441/}
}
TY  - JOUR
AU  - Ochem, Pascal
TI  - Negative results on acyclic improper colorings
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3441/
DO  - 10.46298/dmtcs.3441
LA  - en
ID  - DMTCS_2005_special_250_a50
ER  - 
%0 Journal Article
%A Ochem, Pascal
%T Negative results on acyclic improper colorings
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3441/
%R 10.46298/dmtcs.3441
%G en
%F DMTCS_2005_special_250_a50
Ochem, Pascal. Negative results on acyclic improper colorings. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005). doi : 10.46298/dmtcs.3441. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3441/

Cité par Sources :