Linear choosability of graphs
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005).

Voir la notice de l'article provenant de la source Episciences

A proper vertex coloring of a non oriented graph $G=(V,E)$ is linear if the graph induced by the vertices of two color classes is a forest of paths. A graph $G$ is $L$-list colorable if for a given list assignment $L=\{L(v): v∈V\}$, there exists a proper coloring $c$ of $G$ such that $c(v)∈L(v)$ for all $v∈V$. If $G$ is $L$-list colorable for every list assignment with $|L(v)|≥k$ for all $v∈V$, then $G$ is said $k$-choosable. A graph is said to be lineary $k$-choosable if the coloring obtained is linear. In this paper, we investigate the linear choosability of graphs for some families of graphs: graphs with small maximum degree, with given maximum average degree, planar graphs... Moreover, we prove that determining whether a bipartite subcubic planar graph is lineary 3-colorable is an NP-complete problem.
@article{DMTCS_2005_special_250_a43,
     author = {Esperet, Louis and Montassier, Mickael and Raspaud, Andr\'e},
     title = {Linear choosability of graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3434},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3434/}
}
TY  - JOUR
AU  - Esperet, Louis
AU  - Montassier, Mickael
AU  - Raspaud, André
TI  - Linear choosability of graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3434/
DO  - 10.46298/dmtcs.3434
LA  - en
ID  - DMTCS_2005_special_250_a43
ER  - 
%0 Journal Article
%A Esperet, Louis
%A Montassier, Mickael
%A Raspaud, André
%T Linear choosability of graphs
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3434/
%R 10.46298/dmtcs.3434
%G en
%F DMTCS_2005_special_250_a43
Esperet, Louis; Montassier, Mickael; Raspaud, André. Linear choosability of graphs. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005). doi : 10.46298/dmtcs.3434. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3434/

Cité par Sources :