Pairwise Intersections and Forbidden Configurations
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005).

Voir la notice de l'article provenant de la source Episciences

Let $f_m(a,b,c,d)$ denote the maximum size of a family $\mathcal{F}$ of subsets of an $m$-element set for which there is no pair of subsets $A,B \in \mathcal{F}$ with $|A \cap B| \geq a$, $|\bar{A} \cap B| \geq b$, $|A \cap \bar{B}| \geq c$, and $|\bar{A} \cap \bar{B}| \geq d$. By symmetry we can assume $a \geq d$ and $b \geq c$. We show that $f_m(a,b,c,d)$ is $\Theta (m^{a+b-1})$ if either $b > c$ or $a,b \geq 1$. We also show that $f_m(0,b,b,0)$ is $\Theta (m^b)$ and $f_m(a,0,0,d)$ is $\Theta (m^a)$. This can be viewed as a result concerning forbidden configurations and is further evidence for a conjecture of Anstee and Sali. Our key tool is a strong stability version of the Complete Intersection Theorem of Ahlswede and Khachatrian, which is of independent interest.
@article{DMTCS_2005_special_250_a35,
     author = {Anstee, Richard P. and Keevash, Peter},
     title = {Pairwise {Intersections} and {Forbidden} {Configurations}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3426},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3426/}
}
TY  - JOUR
AU  - Anstee, Richard P.
AU  - Keevash, Peter
TI  - Pairwise Intersections and Forbidden Configurations
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3426/
DO  - 10.46298/dmtcs.3426
LA  - en
ID  - DMTCS_2005_special_250_a35
ER  - 
%0 Journal Article
%A Anstee, Richard P.
%A Keevash, Peter
%T Pairwise Intersections and Forbidden Configurations
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3426/
%R 10.46298/dmtcs.3426
%G en
%F DMTCS_2005_special_250_a35
Anstee, Richard P.; Keevash, Peter. Pairwise Intersections and Forbidden Configurations. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005). doi : 10.46298/dmtcs.3426. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3426/

Cité par Sources :