Monotone Boolean Functions with s Zeros Farthest from Threshold Functions
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005).

Voir la notice de l'article provenant de la source Episciences

Let $T_t$ denote the $t$-threshold function on the $n$-cube: $T_t(x) = 1$ if $|\{i : x_i=1\}| \geq t$, and $0$ otherwise. Define the distance between Boolean functions $g$ and $h$, $d(g,h)$, to be the number of points on which $g$ and $h$ disagree. We consider the following extremal problem: Over a monotone Boolean function $g$ on the $n$-cube with $s$ zeros, what is the maximum of $d(g,T_t)$? We show that the following monotone function $p_s$ maximizes the distance: For $x \in \{0,1\}^n$, $p_s(x)=0$ if and only if $N(x) < s$, where $N(x)$ is the integer whose $n$-bit binary representation is $x$. Our result generalizes the previous work for the case $t=\lceil n/2 \rceil$ and $s=2^{n-1}$ by Blum, Burch, and Langford [BBL98-FOCS98], who considered the problem to analyze the behavior of a learning algorithm for monotone Boolean functions, and the previous work for the same $t$ and $s$ by Amano and Maruoka [AM02-ALT02].
@article{DMTCS_2005_special_250_a34,
     author = {Amano, Kazuyuki and Tarui, Jun},
     title = {Monotone {Boolean} {Functions} with s {Zeros} {Farthest} from {Threshold} {Functions}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3425},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3425/}
}
TY  - JOUR
AU  - Amano, Kazuyuki
AU  - Tarui, Jun
TI  - Monotone Boolean Functions with s Zeros Farthest from Threshold Functions
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3425/
DO  - 10.46298/dmtcs.3425
LA  - en
ID  - DMTCS_2005_special_250_a34
ER  - 
%0 Journal Article
%A Amano, Kazuyuki
%A Tarui, Jun
%T Monotone Boolean Functions with s Zeros Farthest from Threshold Functions
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3425/
%R 10.46298/dmtcs.3425
%G en
%F DMTCS_2005_special_250_a34
Amano, Kazuyuki; Tarui, Jun. Monotone Boolean Functions with s Zeros Farthest from Threshold Functions. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005). doi : 10.46298/dmtcs.3425. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3425/

Cité par Sources :