Hypertree-Width and Related Hypergraph Invariants
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005).

Voir la notice de l'article provenant de la source Episciences

We study the notion of hypertree-width of hypergraphs. We prove that, up to a constant factor, hypertree-width is the same as a number of other hypergraph invariants that resemble graph invariants such as bramble-number, branch-width, linkedness, and the minimum number of cops required to win Seymour and Thomas's robber and cops game.
@article{DMTCS_2005_special_250_a33,
     author = {Adler, Isolde and Gottlob, Georg and Grohe, Martin},
     title = {Hypertree-Width and {Related} {Hypergraph} {Invariants}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3424},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3424/}
}
TY  - JOUR
AU  - Adler, Isolde
AU  - Gottlob, Georg
AU  - Grohe, Martin
TI  - Hypertree-Width and Related Hypergraph Invariants
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3424/
DO  - 10.46298/dmtcs.3424
LA  - en
ID  - DMTCS_2005_special_250_a33
ER  - 
%0 Journal Article
%A Adler, Isolde
%A Gottlob, Georg
%A Grohe, Martin
%T Hypertree-Width and Related Hypergraph Invariants
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3424/
%R 10.46298/dmtcs.3424
%G en
%F DMTCS_2005_special_250_a33
Adler, Isolde; Gottlob, Georg; Grohe, Martin. Hypertree-Width and Related Hypergraph Invariants. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005). doi : 10.46298/dmtcs.3424. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3424/

Cité par Sources :