Decomposable graphs and definitions with no quantifier alternation
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005).

Voir la notice de l'article provenant de la source Episciences

Let $D(G)$ be the minimum quantifier depth of a first order sentence $\Phi$ that defines a graph $G$ up to isomorphism in terms of the adjacency and the equality relations. Let $D_0(G)$ be a variant of $D(G)$ where we do not allow quantifier alternations in $\Phi$. Using large graphs decomposable in complement-connected components by a short sequence of serial and parallel decompositions, we show examples of $G$ on $n$ vertices with $D_0(G) \leq 2 \log^{\ast}n+O(1)$. On the other hand, we prove a lower bound $D_0(G) \geq \log^{\ast}n-\log^{\ast}\log^{\ast}n-O(1)$ for all $G$. Here $\log^{\ast}n$ is equal to the minimum number of iterations of the binary logarithm needed to bring $n$ below $1$.
@article{DMTCS_2005_special_250_a32,
     author = {Pikhurko, Oleg and Spencer, Joel and Verbitsky, Oleg},
     title = {Decomposable graphs and definitions with no quantifier alternation},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3423},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3423/}
}
TY  - JOUR
AU  - Pikhurko, Oleg
AU  - Spencer, Joel
AU  - Verbitsky, Oleg
TI  - Decomposable graphs and definitions with no quantifier alternation
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3423/
DO  - 10.46298/dmtcs.3423
LA  - en
ID  - DMTCS_2005_special_250_a32
ER  - 
%0 Journal Article
%A Pikhurko, Oleg
%A Spencer, Joel
%A Verbitsky, Oleg
%T Decomposable graphs and definitions with no quantifier alternation
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3423/
%R 10.46298/dmtcs.3423
%G en
%F DMTCS_2005_special_250_a32
Pikhurko, Oleg; Spencer, Joel; Verbitsky, Oleg. Decomposable graphs and definitions with no quantifier alternation. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005). doi : 10.46298/dmtcs.3423. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3423/

Cité par Sources :