A Note on Set Systems with no Union of Cardinality 0 modulo m
Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 1.

Voir la notice de l'article provenant de la source Episciences

\emphAlon, Kleitman, Lipton, Meshulam, Rabin and \emphSpencer (Graphs. Combin. 7 (1991), no. 2, 97-99) proved, that for any hypergraph \textbf\textitF=\F_1,F_2,\ldots, F_d(q-1)+1\, where q is a prime-power, and d denotes the maximal degree of the hypergraph, there exists an \textbf\textitF_0⊂ \textbf\textitF, such that |\bigcup_F∈\textbf\textitF_0F| ≡ 0 (q). We give a direct, alternative proof for this theorem, and we also show that an explicit construction exists for a hypergraph of degree d and size Ω (d^2) which does not contain a non-empty sub-hypergraph with a union of size 0 modulo 6, consequently, the theorem does not generalize for non-prime-power moduli.
@article{DMTCS_2003_6_1_a10,
     author = {Grolmusz, Vince},
     title = {A {Note} on {Set} {Systems} with no {Union} of {Cardinality} 0 modulo m},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003-2004},
     doi = {10.46298/dmtcs.341},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.341/}
}
TY  - JOUR
AU  - Grolmusz, Vince
TI  - A Note on Set Systems with no Union of Cardinality 0 modulo m
JO  - Discrete mathematics & theoretical computer science
PY  - 2003-2004
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.341/
DO  - 10.46298/dmtcs.341
LA  - en
ID  - DMTCS_2003_6_1_a10
ER  - 
%0 Journal Article
%A Grolmusz, Vince
%T A Note on Set Systems with no Union of Cardinality 0 modulo m
%J Discrete mathematics & theoretical computer science
%D 2003-2004
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.341/
%R 10.46298/dmtcs.341
%G en
%F DMTCS_2003_6_1_a10
Grolmusz, Vince. A Note on Set Systems with no Union of Cardinality 0 modulo m. Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 1. doi : 10.46298/dmtcs.341. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.341/

Cité par Sources :