Density of universal classes of series-parallel graphs
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005).

Voir la notice de l'article provenant de la source Episciences

A class of graphs $\mathcal{C}$ ordered by the homomorphism relation is universal if every countable partial order can be embedded in $\mathcal{C}$. It was shown in [ZH] that the class $\mathcal{C_k}$ of $k$-colorable graphs, for any fixed $k≥3$, induces a universal partial order. In [HN1], a surprisingly small subclass of $\mathcal{C_3}$ which is a proper subclass of $K_4$-minor-free graphs $(\mathcal{G/K_4)}$ is shown to be universal. In another direction, a density result was given in [PZ], that for each rational number $a/b ∈[2,8/3]∪ \{3\}$, there is a $K_4$-minor-free graph with circular chromatic number equal to $a/b$. In this note we show for each rational number $a/b$ within this interval the class $\mathcal{K_{a/b}}$ of $0K_4$-minor-free graphs with circular chromatic number $a/b$ is universal if and only if $a/b ≠2$, $5/2$ or $3$. This shows yet another surprising richness of the $K_4$-minor-free class that it contains universal classes as dense as the rational numbers.
@article{DMTCS_2005_special_250_a16,
     author = {Ne\v{s}et\v{r}il, Jaroslav and Nigussie, Yared},
     title = {Density of universal classes of series-parallel graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3407},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3407/}
}
TY  - JOUR
AU  - Nešetřil, Jaroslav
AU  - Nigussie, Yared
TI  - Density of universal classes of series-parallel graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3407/
DO  - 10.46298/dmtcs.3407
LA  - en
ID  - DMTCS_2005_special_250_a16
ER  - 
%0 Journal Article
%A Nešetřil, Jaroslav
%A Nigussie, Yared
%T Density of universal classes of series-parallel graphs
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3407/
%R 10.46298/dmtcs.3407
%G en
%F DMTCS_2005_special_250_a16
Nešetřil, Jaroslav; Nigussie, Yared. Density of universal classes of series-parallel graphs. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005). doi : 10.46298/dmtcs.3407. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3407/

Cité par Sources :