$K_{\ell}^{-}$-factors in graphs
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005).

Voir la notice de l'article provenant de la source Episciences

Let $K_ℓ^-$ denote the graph obtained from $K_ℓ$ by deleting one edge. We show that for every $γ >0$ and every integer $ℓ≥4$ there exists an integer $n_0=n_0(γ ,ℓ)$ such that every graph $G$ whose order $n≥n_0$ is divisible by $ℓ$ and whose minimum degree is at least $(\frac{ℓ^2-3ℓ+1}{/ ℓ(ℓ-2)}+γ )n$ contains a $K_ℓ^-$-factor, i.e. a collection of disjoint copies of $K_ℓ^-$ which covers all vertices of $G$. This is best possible up to the error term $γn$ and yields an approximate solution to a conjecture of Kawarabayashi.
@article{DMTCS_2005_special_250_a12,
     author = {K\"uhn, Daniela and Osthus, Deryk},
     title = {$K_{\ell}^{-}$-factors in graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3403},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3403/}
}
TY  - JOUR
AU  - Kühn, Daniela
AU  - Osthus, Deryk
TI  - $K_{\ell}^{-}$-factors in graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3403/
DO  - 10.46298/dmtcs.3403
LA  - en
ID  - DMTCS_2005_special_250_a12
ER  - 
%0 Journal Article
%A Kühn, Daniela
%A Osthus, Deryk
%T $K_{\ell}^{-}$-factors in graphs
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3403/
%R 10.46298/dmtcs.3403
%G en
%F DMTCS_2005_special_250_a12
Kühn, Daniela; Osthus, Deryk. $K_{\ell}^{-}$-factors in graphs. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005). doi : 10.46298/dmtcs.3403. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3403/

Cité par Sources :