Matroid matching with Dilworth truncation
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005).

Voir la notice de l'article provenant de la source Episciences

Let $H=(V,E)$ be a hypergraph and let $k≥ 1$ and$ l≥ 0$ be fixed integers. Let $\mathcal{M}$ be the matroid with ground-set $E s.t. a$ set $F⊆E$ is independent if and only if each $X⊆V$ with $k|X|-l≥ 0$ spans at most $k|X|-l$ hyperedges of $F$. We prove that if $H$ is dense enough, then $\mathcal{M}$ satisfies the double circuit property, thus the min-max formula of Dress and Lovász on the maximum matroid matching holds for $\mathcal{M}$ . Our result implies the Berge-Tutte formula on the maximum matching of graphs $(k=1, l=0)$, generalizes Lovász' graphic matroid (cycle matroid) matching formula to hypergraphs $(k=l=1)$ and gives a min-max formula for the maximum matroid matching in the 2-dimensional rigidity matroid $(k=2, l=3)$.
@article{DMTCS_2005_special_250_a2,
     author = {Makai, M\'arton},
     title = {Matroid matching with {Dilworth} truncation},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)},
     year = {2005},
     doi = {10.46298/dmtcs.3393},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3393/}
}
TY  - JOUR
AU  - Makai, Márton
TI  - Matroid matching with Dilworth truncation
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3393/
DO  - 10.46298/dmtcs.3393
LA  - en
ID  - DMTCS_2005_special_250_a2
ER  - 
%0 Journal Article
%A Makai, Márton
%T Matroid matching with Dilworth truncation
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3393/
%R 10.46298/dmtcs.3393
%G en
%F DMTCS_2005_special_250_a2
Makai, Márton. Matroid matching with Dilworth truncation. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (2005). doi : 10.46298/dmtcs.3393. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3393/

Cité par Sources :