Analysis of biclusters with applications to gene expression data
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms (2005).

Voir la notice de l'article provenant de la source Episciences

For a given matrix of size $n \times m$ over a finite alphabet $\mathcal{A}$, a bicluster is a submatrix composed of selected columns and rows satisfying a certain property. In microarrays analysis one searches for largest biclusters in which selected rows constitute the same string (pattern); in another formulation of the problem one tries to find a maximally dense submatrix. In a conceptually similar problem, namely the bipartite clique problem on graphs, one looks for the largest binary submatrix with all '1'. In this paper, we assume that the original matrix is generated by a memoryless source over a finite alphabet $\mathcal{A}$. We first consider the case where the selected biclusters are square submatrices and prove that with high probability (whp) the largest (square) bicluster having the same row-pattern is of size $\log_Q^2 n m$ where $Q^{-1}$ is the (largest) probability of a symbol. We observe, however, that when we consider $\textit{any}$ submatrices (not just $\textit{square}$ submatrices), then the largest area of a bicluster jumps to $A_n$ (whp) where $A$ is an explicitly computable constant. These findings complete some recent results concerning maximal biclusters and maximum balanced bicliques for random bipartite graphs.
@article{DMTCS_2005_special_249_a33,
     author = {Park, Gahyun and Szpankowski, Wojciech},
     title = {Analysis of biclusters with applications to gene expression data},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms},
     year = {2005},
     doi = {10.46298/dmtcs.3385},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3385/}
}
TY  - JOUR
AU  - Park, Gahyun
AU  - Szpankowski, Wojciech
TI  - Analysis of biclusters with applications to gene expression data
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3385/
DO  - 10.46298/dmtcs.3385
LA  - en
ID  - DMTCS_2005_special_249_a33
ER  - 
%0 Journal Article
%A Park, Gahyun
%A Szpankowski, Wojciech
%T Analysis of biclusters with applications to gene expression data
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3385/
%R 10.46298/dmtcs.3385
%G en
%F DMTCS_2005_special_249_a33
Park, Gahyun; Szpankowski, Wojciech. Analysis of biclusters with applications to gene expression data. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms (2005). doi : 10.46298/dmtcs.3385. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3385/

Cité par Sources :