The distribution of ascents of size $d$ or more in samples of geometric random variables
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms (2005).

Voir la notice de l'article provenant de la source Episciences

We consider words or strings of characters $a_1a_2a_3 \ldots a_n$ of length $n$, where the letters $a_i \in \mathbb{Z}$ are independently generated with a geometric probability $\mathbb{P} \{ X=k \} = pq^{k-1}$ where $p+q=1$. Let $d$ be a fixed nonnegative integer. We say that we have an ascent of size $d$ or more if $a_{i+1} \geq a_i+d$. We determine the mean, variance and limiting distribution of the number of ascents of size $d$ or more in a random geometrically distributed word.
@article{DMTCS_2005_special_249_a30,
     author = {Brennan, Charlotte and Knopfmacher, Arnold},
     title = {The distribution of ascents of size $d$ or more in samples of geometric random variables},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms},
     year = {2005},
     doi = {10.46298/dmtcs.3382},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3382/}
}
TY  - JOUR
AU  - Brennan, Charlotte
AU  - Knopfmacher, Arnold
TI  - The distribution of ascents of size $d$ or more in samples of geometric random variables
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3382/
DO  - 10.46298/dmtcs.3382
LA  - en
ID  - DMTCS_2005_special_249_a30
ER  - 
%0 Journal Article
%A Brennan, Charlotte
%A Knopfmacher, Arnold
%T The distribution of ascents of size $d$ or more in samples of geometric random variables
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3382/
%R 10.46298/dmtcs.3382
%G en
%F DMTCS_2005_special_249_a30
Brennan, Charlotte; Knopfmacher, Arnold. The distribution of ascents of size $d$ or more in samples of geometric random variables. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms (2005). doi : 10.46298/dmtcs.3382. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3382/

Cité par Sources :