Analysis of tree algorithm for collision resolution
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms (2005).

Voir la notice de l'article provenant de la source Episciences

For the tree algorithm introduced by [Cap79] and [TsMi78] let $L_N$ denote the expected collision resolution time given the collision multiplicity $N$. If $L(z)$ stands for the Poisson transform of $L_N$, then we show that $L_N - L(N) ≃ 1.29·10^-4 \cos (2 π \log _2 N + 0.698)$.
@article{DMTCS_2005_special_249_a24,
     author = {Gyorfi, Laszlo and Gyori, S\'andor},
     title = {Analysis of tree algorithm for collision resolution},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms},
     year = {2005},
     doi = {10.46298/dmtcs.3376},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3376/}
}
TY  - JOUR
AU  - Gyorfi, Laszlo
AU  - Gyori, Sándor
TI  - Analysis of tree algorithm for collision resolution
JO  - Discrete mathematics & theoretical computer science
PY  - 2005
VL  - DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3376/
DO  - 10.46298/dmtcs.3376
LA  - en
ID  - DMTCS_2005_special_249_a24
ER  - 
%0 Journal Article
%A Gyorfi, Laszlo
%A Gyori, Sándor
%T Analysis of tree algorithm for collision resolution
%J Discrete mathematics & theoretical computer science
%D 2005
%V DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3376/
%R 10.46298/dmtcs.3376
%G en
%F DMTCS_2005_special_249_a24
Gyorfi, Laszlo; Gyori, Sándor. Analysis of tree algorithm for collision resolution. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms, DMTCS Proceedings vol. AD, International Conference on Analysis of Algorithms (2005). doi : 10.46298/dmtcs.3376. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3376/

Cité par Sources :