Fountains, histograms, and q-identities
Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 1.

Voir la notice de l'article provenant de la source Episciences

We solve the recursion S_n=S_n-1-q^nS_n-p, both, explicitly, and in the limit for n→∞, proving in this way a formula due to Merlini and Sprugnoli. It is also discussed how computer algebra could be applied.
@article{DMTCS_2003_6_1_a5,
     author = {Paule, Peter and Prodinger, Helmut},
     title = {Fountains, histograms, and q-identities},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003-2004},
     doi = {10.46298/dmtcs.336},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.336/}
}
TY  - JOUR
AU  - Paule, Peter
AU  - Prodinger, Helmut
TI  - Fountains, histograms, and q-identities
JO  - Discrete mathematics & theoretical computer science
PY  - 2003-2004
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.336/
DO  - 10.46298/dmtcs.336
LA  - en
ID  - DMTCS_2003_6_1_a5
ER  - 
%0 Journal Article
%A Paule, Peter
%A Prodinger, Helmut
%T Fountains, histograms, and q-identities
%J Discrete mathematics & theoretical computer science
%D 2003-2004
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.336/
%R 10.46298/dmtcs.336
%G en
%F DMTCS_2003_6_1_a5
Paule, Peter; Prodinger, Helmut. Fountains, histograms, and q-identities. Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 1. doi : 10.46298/dmtcs.336. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.336/

Cité par Sources :