A new two-variable generalization of the chromatic polynomial
Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 1.

Voir la notice de l'article provenant de la source Episciences

We present a two-variable polynomial, which simultaneously generalizes the chromatic polynomial, the independence polynomial, and the matching polynomial of a graph. This new polynomial satisfies both an edge decomposition formula and a vertex decomposition formula. We establish two general expressions for this new polynomial: one in terms of the broken circuit complex and one in terms of the lattice of forbidden colorings. We show that the new polynomial may be considered as a specialization of Stanley's chromatic symmetric function. We finally give explicit expressions for the generalized chromatic polynomial of complete graphs, complete bipartite graphs, paths, and cycles, and show that it can be computed in polynomial time for trees and graphs of restricted pathwidth.
@article{DMTCS_2003_6_1_a4,
     author = {Dohmen, Klaus and Poenitz, Andr\'e and Tittmann, Peter},
     title = {A new two-variable generalization of the chromatic polynomial},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2003-2004},
     doi = {10.46298/dmtcs.335},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.335/}
}
TY  - JOUR
AU  - Dohmen, Klaus
AU  - Poenitz, André
AU  - Tittmann, Peter
TI  - A new two-variable generalization of the chromatic polynomial
JO  - Discrete mathematics & theoretical computer science
PY  - 2003-2004
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.335/
DO  - 10.46298/dmtcs.335
LA  - en
ID  - DMTCS_2003_6_1_a4
ER  - 
%0 Journal Article
%A Dohmen, Klaus
%A Poenitz, André
%A Tittmann, Peter
%T A new two-variable generalization of the chromatic polynomial
%J Discrete mathematics & theoretical computer science
%D 2003-2004
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.335/
%R 10.46298/dmtcs.335
%G en
%F DMTCS_2003_6_1_a4
Dohmen, Klaus; Poenitz, André; Tittmann, Peter. A new two-variable generalization of the chromatic polynomial. Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 1. doi : 10.46298/dmtcs.335. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.335/

Cité par Sources :