Random Infinite Permutations and the Cyclic Time Random Walk
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03) (2003).

Voir la notice de l'article provenant de la source Episciences

The random stirring process is a natural random walk on the set of permutations of the vertex set of a graph. The cyclic time random walk is a self interacting random walk on a graph. It is influenced by its past, in that it is constrained to repeat its past choices if it returns to a previously visited edge after a multiple of some period of time. The two models are fundamentally equivalent to each other as well as to a certain coalescence and fragmentation process.
@article{DMTCS_2003_special_248_a22,
     author = {Angel, Omer},
     title = {Random {Infinite} {Permutations} and the {Cyclic} {Time} {Random} {Walk}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03)},
     year = {2003},
     doi = {10.46298/dmtcs.3342},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3342/}
}
TY  - JOUR
AU  - Angel, Omer
TI  - Random Infinite Permutations and the Cyclic Time Random Walk
JO  - Discrete mathematics & theoretical computer science
PY  - 2003
VL  - DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3342/
DO  - 10.46298/dmtcs.3342
LA  - en
ID  - DMTCS_2003_special_248_a22
ER  - 
%0 Journal Article
%A Angel, Omer
%T Random Infinite Permutations and the Cyclic Time Random Walk
%J Discrete mathematics & theoretical computer science
%D 2003
%V DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3342/
%R 10.46298/dmtcs.3342
%G en
%F DMTCS_2003_special_248_a22
Angel, Omer. Random Infinite Permutations and the Cyclic Time Random Walk. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03) (2003). doi : 10.46298/dmtcs.3342. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3342/

Cité par Sources :