On an open problem of Green and Losonczy: exact enumeration of freely braided permutations
Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 2.

Voir la notice de l'article provenant de la source Episciences

Recently, Green and Losonczy~GL1,GL2 introduced \emphfreely braided permutation as a special class of restricted permutations has arisen in representation theory. The freely braided permutations were introduced and studied as the upper bound for the number of commutation classes of reduced expressions for an element of a simply laced Coxeter group is achieved if and only if when the element is freely braided. In this paper, we prove that the generating function for the number of freely braided permutations in S_n is given by \par (1-3x-2x^2+(1+x)√1-4x) / (1-4x-x^2+(1-x^2)√1-4x).\par
@article{DMTCS_2004_6_2_a16,
     author = {Mansour, Toufik},
     title = {On an open problem of {Green} and {Losonczy:} exact enumeration of freely braided permutations},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003-2004},
     doi = {10.46298/dmtcs.327},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.327/}
}
TY  - JOUR
AU  - Mansour, Toufik
TI  - On an open problem of Green and Losonczy: exact enumeration of freely braided permutations
JO  - Discrete mathematics & theoretical computer science
PY  - 2003-2004
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.327/
DO  - 10.46298/dmtcs.327
LA  - en
ID  - DMTCS_2004_6_2_a16
ER  - 
%0 Journal Article
%A Mansour, Toufik
%T On an open problem of Green and Losonczy: exact enumeration of freely braided permutations
%J Discrete mathematics & theoretical computer science
%D 2003-2004
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.327/
%R 10.46298/dmtcs.327
%G en
%F DMTCS_2004_6_2_a16
Mansour, Toufik. On an open problem of Green and Losonczy: exact enumeration of freely braided permutations. Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 2. doi : 10.46298/dmtcs.327. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.327/

Cité par Sources :