The Width of Galton-Watson Trees Conditioned by the Size
Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 2.

Voir la notice de l'article provenant de la source Episciences

It is proved that the moments of the width of Galton-Watson trees of size n and with offspring variance σ ^2 are asymptotically given by (σ √n)^pm_p where m_p are the moments of the maximum of the local time of a standard scaled Brownian excursion. This is done by combining a weak limit theorem and a tightness estimate. The method is quite general and we state some further applications.
@article{DMTCS_2004_6_2_a12,
     author = {Drmota, Michael and Gittenberger, Bernhard},
     title = {The {Width} of {Galton-Watson} {Trees} {Conditioned} by the {Size}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003-2004},
     doi = {10.46298/dmtcs.323},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.323/}
}
TY  - JOUR
AU  - Drmota, Michael
AU  - Gittenberger, Bernhard
TI  - The Width of Galton-Watson Trees Conditioned by the Size
JO  - Discrete mathematics & theoretical computer science
PY  - 2003-2004
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.323/
DO  - 10.46298/dmtcs.323
LA  - en
ID  - DMTCS_2004_6_2_a12
ER  - 
%0 Journal Article
%A Drmota, Michael
%A Gittenberger, Bernhard
%T The Width of Galton-Watson Trees Conditioned by the Size
%J Discrete mathematics & theoretical computer science
%D 2003-2004
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.323/
%R 10.46298/dmtcs.323
%G en
%F DMTCS_2004_6_2_a12
Drmota, Michael; Gittenberger, Bernhard. The Width of Galton-Watson Trees Conditioned by the Size. Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 2. doi : 10.46298/dmtcs.323. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.323/

Cité par Sources :