The Summation Package Sigma: Underlying Principles and a Rhombus Tiling Application
Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 2.

Voir la notice de l'article provenant de la source Episciences

We give an overview of how a huge class of multisum identities can be proven and discovered with the summation package Sigma implemented in the computer algebra system Mathematica. General principles of symbolic summation are discussed. We illustrate the usage of Sigma by showing how one can find and prove a multisum identity that arose in the enumeration of rhombus tilings of a symmetric hexagon. Whereas this identity has been derived alternatively with the help of highly involved transformations of special functions, our tools enable to find and prove this identity completely automatically with the computer.
@article{DMTCS_2004_6_2_a4,
     author = {Schneider, Carsten},
     title = {The {Summation} {Package} {Sigma:} {Underlying} {Principles} and a {Rhombus} {Tiling} {Application}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2003-2004},
     doi = {10.46298/dmtcs.313},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.313/}
}
TY  - JOUR
AU  - Schneider, Carsten
TI  - The Summation Package Sigma: Underlying Principles and a Rhombus Tiling Application
JO  - Discrete mathematics & theoretical computer science
PY  - 2003-2004
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.313/
DO  - 10.46298/dmtcs.313
LA  - en
ID  - DMTCS_2004_6_2_a4
ER  - 
%0 Journal Article
%A Schneider, Carsten
%T The Summation Package Sigma: Underlying Principles and a Rhombus Tiling Application
%J Discrete mathematics & theoretical computer science
%D 2003-2004
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.313/
%R 10.46298/dmtcs.313
%G en
%F DMTCS_2004_6_2_a4
Schneider, Carsten. The Summation Package Sigma: Underlying Principles and a Rhombus Tiling Application. Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 2. doi : 10.46298/dmtcs.313. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.313/

Cité par Sources :