New Results on Generalized Graph Coloring
Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 2 Cet article a éte moissonné depuis la source Episciences

Voir la notice de l'article

For graph classes \wp_1,...,\wp_k, Generalized Graph Coloring is the problem of deciding whether the vertex set of a given graph G can be partitioned into subsets V_1,...,V_k so that V_j induces a graph in the class \wp_j (j=1,2,...,k). If \wp_1=...=\wp_k is the class of edgeless graphs, then this problem coincides with the standard vertex k-COLORABILITY, which is known to be NP-complete for any k≥ 3. Recently, this result has been generalized by showing that if all \wp_i's are additive hereditary, then the generalized graph coloring is NP-hard, with the only exception of bipartite graphs. Clearly, a similar result follows when all the \wp_i's are co-additive.
@article{DMTCS_2004_6_2_a2,
     author = {Alekseev, Vladimir E. and Farrugia, Alastair and Lozin, Vadim V.},
     title = {New {Results} on {Generalized} {Graph} {Coloring}},
     journal = {Discrete mathematics & theoretical computer science},
     year = {2003-2004},
     volume = {6},
     number = {2},
     doi = {10.46298/dmtcs.311},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.311/}
}
TY  - JOUR
AU  - Alekseev, Vladimir E.
AU  - Farrugia, Alastair
AU  - Lozin, Vadim V.
TI  - New Results on Generalized Graph Coloring
JO  - Discrete mathematics & theoretical computer science
PY  - 2003-2004
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.311/
DO  - 10.46298/dmtcs.311
LA  - en
ID  - DMTCS_2004_6_2_a2
ER  - 
%0 Journal Article
%A Alekseev, Vladimir E.
%A Farrugia, Alastair
%A Lozin, Vadim V.
%T New Results on Generalized Graph Coloring
%J Discrete mathematics & theoretical computer science
%D 2003-2004
%V 6
%N 2
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.311/
%R 10.46298/dmtcs.311
%G en
%F DMTCS_2004_6_2_a2
Alekseev, Vladimir E.; Farrugia, Alastair; Lozin, Vadim V. New Results on Generalized Graph Coloring. Discrete mathematics & theoretical computer science, Tome 6 (2003-2004) no. 2. doi: 10.46298/dmtcs.311

Cité par Sources :