An inequality of Kostka numbers and Galois groups of Schubert problems
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012).

Voir la notice de l'article provenant de la source Episciences

We show that the Galois group of any Schubert problem involving lines in projective space contains the alternating group. Using a criterion of Vakil and a special position argument due to Schubert, this follows from a particular inequality among Kostka numbers of two-rowed tableaux. In most cases, an easy combinatorial injection proves the inequality. For the remaining cases, we use that these Kostka numbers appear in tensor product decompositions of $\mathfrak{sl}_2\mathbb{C}$ -modules. Interpreting the tensor product as the action of certain commuting Toeplitz matrices and using a spectral analysis and Fourier series rewrites the inequality as the positivity of an integral. We establish the inequality by estimating this integral.
@article{DMTCS_2012_special_263_a85,
     author = {Brooks, Christopher J. and Campo, Abraham Mart{\'\i}n and Sottile, Frank},
     title = {An inequality of {Kostka} numbers and {Galois} groups of {Schubert} problems},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)},
     year = {2012},
     doi = {10.46298/dmtcs.3099},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3099/}
}
TY  - JOUR
AU  - Brooks, Christopher J.
AU  - Campo, Abraham Martín
AU  - Sottile, Frank
TI  - An inequality of Kostka numbers and Galois groups of Schubert problems
JO  - Discrete mathematics & theoretical computer science
PY  - 2012
VL  - DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3099/
DO  - 10.46298/dmtcs.3099
LA  - en
ID  - DMTCS_2012_special_263_a85
ER  - 
%0 Journal Article
%A Brooks, Christopher J.
%A Campo, Abraham Martín
%A Sottile, Frank
%T An inequality of Kostka numbers and Galois groups of Schubert problems
%J Discrete mathematics & theoretical computer science
%D 2012
%V DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3099/
%R 10.46298/dmtcs.3099
%G en
%F DMTCS_2012_special_263_a85
Brooks, Christopher J.; Campo, Abraham Martín; Sottile, Frank. An inequality of Kostka numbers and Galois groups of Schubert problems. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012). doi : 10.46298/dmtcs.3099. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3099/

Cité par Sources :