Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2012_special_263_a75, author = {Ardila, Federico and Block, Florian}, title = {Universal {Polynomials} for {Severi} {Degrees} of {Toric} {Surfaces}}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)}, year = {2012}, doi = {10.46298/dmtcs.3089}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3089/} }
TY - JOUR AU - Ardila, Federico AU - Block, Florian TI - Universal Polynomials for Severi Degrees of Toric Surfaces JO - Discrete mathematics & theoretical computer science PY - 2012 VL - DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3089/ DO - 10.46298/dmtcs.3089 LA - en ID - DMTCS_2012_special_263_a75 ER -
%0 Journal Article %A Ardila, Federico %A Block, Florian %T Universal Polynomials for Severi Degrees of Toric Surfaces %J Discrete mathematics & theoretical computer science %D 2012 %V DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3089/ %R 10.46298/dmtcs.3089 %G en %F DMTCS_2012_special_263_a75
Ardila, Federico; Block, Florian. Universal Polynomials for Severi Degrees of Toric Surfaces. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012). doi : 10.46298/dmtcs.3089. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3089/
Cité par Sources :