Asymptotical behaviour of roots of infinite Coxeter groups I
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012).

Voir la notice de l'article provenant de la source Episciences

Let $W$ be an infinite Coxeter group, and $\Phi$ be the root system constructed from its geometric representation. We study the set $E$ of limit points of "normalized'' roots (representing the directions of the roots). We show that $E$ is contained in the isotropic cone $Q$ of the bilinear form associated to $W$, and illustrate this property with numerous examples and pictures in rank $3$ and $4$. We also define a natural geometric action of $W$ on $E$, for which $E$ is stable. Then we exhibit a countable subset $E_2$ of $E$, formed by limit points for the dihedral reflection subgroups of $W$; we explain how $E_2$ can be built from the intersection with $Q$ of the lines passing through two roots, and we establish that $E_2$ is dense in $E$.
@article{DMTCS_2012_special_263_a74,
     author = {Hohlweg, Christophe and Labb\'e, Jean-Philippe and Ripoll, Vivien},
     title = {Asymptotical behaviour of roots of infinite {Coxeter} groups {I}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)},
     year = {2012},
     doi = {10.46298/dmtcs.3088},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3088/}
}
TY  - JOUR
AU  - Hohlweg, Christophe
AU  - Labbé, Jean-Philippe
AU  - Ripoll, Vivien
TI  - Asymptotical behaviour of roots of infinite Coxeter groups I
JO  - Discrete mathematics & theoretical computer science
PY  - 2012
VL  - DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3088/
DO  - 10.46298/dmtcs.3088
LA  - en
ID  - DMTCS_2012_special_263_a74
ER  - 
%0 Journal Article
%A Hohlweg, Christophe
%A Labbé, Jean-Philippe
%A Ripoll, Vivien
%T Asymptotical behaviour of roots of infinite Coxeter groups I
%J Discrete mathematics & theoretical computer science
%D 2012
%V DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3088/
%R 10.46298/dmtcs.3088
%G en
%F DMTCS_2012_special_263_a74
Hohlweg, Christophe; Labbé, Jean-Philippe; Ripoll, Vivien. Asymptotical behaviour of roots of infinite Coxeter groups I. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012). doi : 10.46298/dmtcs.3088. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3088/

Cité par Sources :