On a Unimodality Conjecture in Matroid Theory
Discrete mathematics & theoretical computer science, Tome 5 (2002).

Voir la notice de l'article provenant de la source Episciences

A certain unimodal conjecture in matroid theory states the number of rank-r matroids on a set of size n is unimodal in r and attains its maximum at r=\lfloor n/2 \rfloor . We show that this conjecture holds up to r=3 by constructing a map from a class of rank-2 matroids into the class of loopless rank-3 matroids. Similar inequalities are proven for the number of non-isomorphic loopless matroids, loopless matroids and matroids.
@article{DMTCS_2002_5_a13,
     author = {Dukes, W. M. B.},
     title = {On a {Unimodality} {Conjecture} in {Matroid} {Theory}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {5},
     year = {2002},
     doi = {10.46298/dmtcs.307},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.307/}
}
TY  - JOUR
AU  - Dukes, W. M. B.
TI  - On a Unimodality Conjecture in Matroid Theory
JO  - Discrete mathematics & theoretical computer science
PY  - 2002
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.307/
DO  - 10.46298/dmtcs.307
LA  - en
ID  - DMTCS_2002_5_a13
ER  - 
%0 Journal Article
%A Dukes, W. M. B.
%T On a Unimodality Conjecture in Matroid Theory
%J Discrete mathematics & theoretical computer science
%D 2002
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.307/
%R 10.46298/dmtcs.307
%G en
%F DMTCS_2002_5_a13
Dukes, W. M. B. On a Unimodality Conjecture in Matroid Theory. Discrete mathematics & theoretical computer science, Tome 5 (2002). doi : 10.46298/dmtcs.307. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.307/

Cité par Sources :