Multicolored isomorphic spanning trees in complete graphs
Discrete mathematics & theoretical computer science, Tome 5 (2002).

Voir la notice de l'article provenant de la source Episciences

Can a complete graph on an even number n (>4) of vertices be properly edge-colored with n-1 colors in such a way that the edges can be partitioned into edge disjoint colorful isomorphic spanning trees? A spanning treee is colorful if all n-1 colors occur among its edges. It is proved that this is possible to accomplish whenever n is a power of two, or five times a power of two.
@article{DMTCS_2002_5_a12,
     author = {Constantine, Gregory},
     title = {Multicolored isomorphic spanning trees in complete graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {5},
     year = {2002},
     doi = {10.46298/dmtcs.306},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.306/}
}
TY  - JOUR
AU  - Constantine, Gregory
TI  - Multicolored isomorphic spanning trees in complete graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2002
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.306/
DO  - 10.46298/dmtcs.306
LA  - en
ID  - DMTCS_2002_5_a12
ER  - 
%0 Journal Article
%A Constantine, Gregory
%T Multicolored isomorphic spanning trees in complete graphs
%J Discrete mathematics & theoretical computer science
%D 2002
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.306/
%R 10.46298/dmtcs.306
%G en
%F DMTCS_2002_5_a12
Constantine, Gregory. Multicolored isomorphic spanning trees in complete graphs. Discrete mathematics & theoretical computer science, Tome 5 (2002). doi : 10.46298/dmtcs.306. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.306/

Cité par Sources :