On singularity confinement for the pentagram map
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012).

Voir la notice de l'article provenant de la source Episciences

The pentagram map, introduced by R. Schwartz, is a birational map on the configuration space of polygons in the projective plane. We study the singularities of the iterates of the pentagram map. We show that a ``typical'' singularity disappears after a finite number of iterations, a confinement phenomenon first discovered by Schwartz. We provide a method to bypass such a singular patch by directly constructing the first subsequent iterate that is well-defined on the singular locus under consideration. The key ingredient of this construction is the notion of a decorated (twisted) polygon, and the extension of the pentagram map to the corresponding decorated configuration space.
@article{DMTCS_2012_special_263_a35,
     author = {Glick, Max},
     title = {On singularity confinement for the pentagram map},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)},
     year = {2012},
     doi = {10.46298/dmtcs.3049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3049/}
}
TY  - JOUR
AU  - Glick, Max
TI  - On singularity confinement for the pentagram map
JO  - Discrete mathematics & theoretical computer science
PY  - 2012
VL  - DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3049/
DO  - 10.46298/dmtcs.3049
LA  - en
ID  - DMTCS_2012_special_263_a35
ER  - 
%0 Journal Article
%A Glick, Max
%T On singularity confinement for the pentagram map
%J Discrete mathematics & theoretical computer science
%D 2012
%V DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3049/
%R 10.46298/dmtcs.3049
%G en
%F DMTCS_2012_special_263_a35
Glick, Max. On singularity confinement for the pentagram map. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012). doi : 10.46298/dmtcs.3049. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3049/

Cité par Sources :