Arithmetic matroids and Tutte polynomials
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012).

Voir la notice de l'article provenant de la source Episciences

We introduce the notion of arithmetic matroid, whose main example is provided by a list of elements in a finitely generated abelian group. We study the representability of its dual, and, guided by the geometry of toric arrangements, we give a combinatorial interpretation of the associated arithmetic Tutte polynomial, which can be seen as a generalization of Crapo's formula.
@article{DMTCS_2012_special_263_a29,
     author = {D'Adderio, Michele and Moci, Luca},
     title = {Arithmetic matroids and {Tutte} polynomials},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)},
     year = {2012},
     doi = {10.46298/dmtcs.3043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3043/}
}
TY  - JOUR
AU  - D'Adderio, Michele
AU  - Moci, Luca
TI  - Arithmetic matroids and Tutte polynomials
JO  - Discrete mathematics & theoretical computer science
PY  - 2012
VL  - DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3043/
DO  - 10.46298/dmtcs.3043
LA  - en
ID  - DMTCS_2012_special_263_a29
ER  - 
%0 Journal Article
%A D'Adderio, Michele
%A Moci, Luca
%T Arithmetic matroids and Tutte polynomials
%J Discrete mathematics & theoretical computer science
%D 2012
%V DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3043/
%R 10.46298/dmtcs.3043
%G en
%F DMTCS_2012_special_263_a29
D'Adderio, Michele; Moci, Luca. Arithmetic matroids and Tutte polynomials. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012). doi : 10.46298/dmtcs.3043. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3043/

Cité par Sources :