Combinatorial Reciprocity for Monotone Triangles
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012).

Voir la notice de l'article provenant de la source Episciences

The number of Monotone Triangles with bottom row $k_1 < k_2 < ⋯< k_n$ is given by a polynomial $\alpha (n; k_1,\ldots,k_n)$ in $n$ variables. The evaluation of this polynomial at weakly decreasing sequences $k_1 ≥k_2 ≥⋯≥k_n $turns out to be interpretable as signed enumeration of new combinatorial objects called Decreasing Monotone Triangles. There exist surprising connections between the two classes of objects – in particular it is shown that $\alpha (n;1,2,\ldots,n) = \alpha (2n; n,n,n-1,n-1,\ldots,1,1)$. In perfect analogy to the correspondence between Monotone Triangles and Alternating Sign Matrices, the set of Decreasing Monotone Triangles with bottom row $(n,n,n-1,n-1,\ldots,1,1)$ is in one-to-one correspondence with a certain set of ASM-like matrices, which also play an important role in proving the claimed identity algebraically. Finding a bijective proof remains an open problem.
@article{DMTCS_2012_special_263_a28,
     author = {Fischer, Ilse and Riegler, Lukas},
     title = {Combinatorial {Reciprocity} for {Monotone} {Triangles}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)},
     year = {2012},
     doi = {10.46298/dmtcs.3042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3042/}
}
TY  - JOUR
AU  - Fischer, Ilse
AU  - Riegler, Lukas
TI  - Combinatorial Reciprocity for Monotone Triangles
JO  - Discrete mathematics & theoretical computer science
PY  - 2012
VL  - DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3042/
DO  - 10.46298/dmtcs.3042
LA  - en
ID  - DMTCS_2012_special_263_a28
ER  - 
%0 Journal Article
%A Fischer, Ilse
%A Riegler, Lukas
%T Combinatorial Reciprocity for Monotone Triangles
%J Discrete mathematics & theoretical computer science
%D 2012
%V DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3042/
%R 10.46298/dmtcs.3042
%G en
%F DMTCS_2012_special_263_a28
Fischer, Ilse; Riegler, Lukas. Combinatorial Reciprocity for Monotone Triangles. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012). doi : 10.46298/dmtcs.3042. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3042/

Cité par Sources :