The height of q-Binary Search Trees
Discrete mathematics & theoretical computer science, Tome 5 (2002).

Voir la notice de l'article provenant de la source Episciences

q-binary search trees are obtained from words, equipped with a geometric distribution instead of permutations. The average and variance of the heighth computated, based on random words of length n, as well as a Gaussian limit law.
@article{DMTCS_2002_5_a10,
     author = {Drmota, Michael and Prodinger, Helmut},
     title = {The height of {q-Binary} {Search} {Trees}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {5},
     year = {2002},
     doi = {10.46298/dmtcs.304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.304/}
}
TY  - JOUR
AU  - Drmota, Michael
AU  - Prodinger, Helmut
TI  - The height of q-Binary Search Trees
JO  - Discrete mathematics & theoretical computer science
PY  - 2002
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.304/
DO  - 10.46298/dmtcs.304
LA  - en
ID  - DMTCS_2002_5_a10
ER  - 
%0 Journal Article
%A Drmota, Michael
%A Prodinger, Helmut
%T The height of q-Binary Search Trees
%J Discrete mathematics & theoretical computer science
%D 2002
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.304/
%R 10.46298/dmtcs.304
%G en
%F DMTCS_2002_5_a10
Drmota, Michael; Prodinger, Helmut. The height of q-Binary Search Trees. Discrete mathematics & theoretical computer science, Tome 5 (2002). doi : 10.46298/dmtcs.304. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.304/

Cité par Sources :