On the degree-chromatic polynomial of a tree
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012) Cet article a éte moissonné depuis la source Episciences

Voir la notice de l'article

The degree chromatic polynomial $P_m(G,k)$ of a graph $G$ counts the number of $k$ -colorings in which no vertex has m adjacent vertices of its same color. We prove Humpert and Martin's conjecture on the leading terms of the degree chromatic polynomial of a tree.
@article{DMTCS_2012_special_263_a6,
     author = {Cifuentes, Diego},
     title = {On the degree-chromatic polynomial of a tree},
     journal = {Discrete mathematics & theoretical computer science},
     year = {2012},
     volume = {DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)},
     doi = {10.46298/dmtcs.3020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3020/}
}
TY  - JOUR
AU  - Cifuentes, Diego
TI  - On the degree-chromatic polynomial of a tree
JO  - Discrete mathematics & theoretical computer science
PY  - 2012
VL  - DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3020/
DO  - 10.46298/dmtcs.3020
LA  - en
ID  - DMTCS_2012_special_263_a6
ER  - 
%0 Journal Article
%A Cifuentes, Diego
%T On the degree-chromatic polynomial of a tree
%J Discrete mathematics & theoretical computer science
%D 2012
%V DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3020/
%R 10.46298/dmtcs.3020
%G en
%F DMTCS_2012_special_263_a6
Cifuentes, Diego. On the degree-chromatic polynomial of a tree. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012). doi: 10.46298/dmtcs.3020

Cité par Sources :