Probabilistic Analysis of Carlitz Compositions
Discrete mathematics & theoretical computer science, Tome 5 (2002).

Voir la notice de l'article provenant de la source Episciences

Using generating functions and limit theorems, we obtain a stochastic description of Carlitz compositions of large integer n (i.e. compositions two successive parts of which are different). We analyze: the number M of parts, the number of compositions T(m,n) with m parts, the distribution of the last part size, the correlation between two successive parts, leading to a Markov chain. We describe also the associated processes and the limiting trajectories, the width and thickness of a composition. We finally present a typical simulation. The limiting processes are characterized by Brownian Motion and some discrete distributions.
@article{DMTCS_2002_5_a8,
     author = {Louchard, Guy and Prodinger, Helmut},
     title = {Probabilistic {Analysis} of {Carlitz} {Compositions}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {5},
     year = {2002},
     doi = {10.46298/dmtcs.302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.302/}
}
TY  - JOUR
AU  - Louchard, Guy
AU  - Prodinger, Helmut
TI  - Probabilistic Analysis of Carlitz Compositions
JO  - Discrete mathematics & theoretical computer science
PY  - 2002
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.302/
DO  - 10.46298/dmtcs.302
LA  - en
ID  - DMTCS_2002_5_a8
ER  - 
%0 Journal Article
%A Louchard, Guy
%A Prodinger, Helmut
%T Probabilistic Analysis of Carlitz Compositions
%J Discrete mathematics & theoretical computer science
%D 2002
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.302/
%R 10.46298/dmtcs.302
%G en
%F DMTCS_2002_5_a8
Louchard, Guy; Prodinger, Helmut. Probabilistic Analysis of Carlitz Compositions. Discrete mathematics & theoretical computer science, Tome 5 (2002). doi : 10.46298/dmtcs.302. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.302/

Cité par Sources :