The Möbius function of generalized subword order
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012).

Voir la notice de l'article provenant de la source Episciences

Let $P$ be a poset and let $P^*$ be the set of all finite length words over $P$. Generalized subword order is the partial order on $P^*$ obtained by letting $u≤ w$ if and only if there is a subword $u'$ of $w$ having the same length as $u$ such that each element of $u$ is less than or equal to the corresponding element of $u'$ in the partial order on $P$. Classical subword order arises when $P$ is an antichain, while letting $P$ be a chain gives an order on compositions. For any finite poset $P$, we give a simple formula for the Möbius function of $P^*$ in terms of the Möbius function of $P$. This permits us to rederive in an easy and uniform manner previous results of Björner, Sagan and Vatter, and Tomie. We are also able to determine the homotopy type of all intervals in $P^*$ for any finite $P$ of rank at most 1.
@article{DMTCS_2012_special_263_a2,
     author = {McNamara, Peter R. W. and Sagan, Bruce E.},
     title = {The {M\"obius} function of generalized subword order},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)},
     year = {2012},
     doi = {10.46298/dmtcs.3016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3016/}
}
TY  - JOUR
AU  - McNamara, Peter R. W.
AU  - Sagan, Bruce E.
TI  - The Möbius function of generalized subword order
JO  - Discrete mathematics & theoretical computer science
PY  - 2012
VL  - DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3016/
DO  - 10.46298/dmtcs.3016
LA  - en
ID  - DMTCS_2012_special_263_a2
ER  - 
%0 Journal Article
%A McNamara, Peter R. W.
%A Sagan, Bruce E.
%T The Möbius function of generalized subword order
%J Discrete mathematics & theoretical computer science
%D 2012
%V DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3016/
%R 10.46298/dmtcs.3016
%G en
%F DMTCS_2012_special_263_a2
McNamara, Peter R. W.; Sagan, Bruce E. The Möbius function of generalized subword order. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012), DMTCS Proceedings vol. AR, 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) (2012). doi : 10.46298/dmtcs.3016. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3016/

Cité par Sources :