Stokes polyhedra for $X$-shaped polyminos
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12), DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12) (2012).

Voir la notice de l'article provenant de la source Episciences

Consider a pair of $\textit{interlacing regular convex polygons}$, each with $2(n + 2)$ vertices, which we will be referring to as $\textit{red}$ and $\textit{black}$ ones. One can place these vertices on the unit circle $|z | = 1$ in the complex plane; the vertices of the red polygon at $\epsilon^{2k}, k = 0, \ldots , 2n − 1$, of the black polygon at $\epsilon^{2k+1}, k = 0, \ldots , 2n − 1$; here $\epsilon = \exp(i \pi /(2n + 2))$. We assign to the vertices of each polygon alternating (within each polygon) signs. Note that all the pairwise intersections of red and black sides are oriented consistently. We declare the corresponding orientation positive.
@article{DMTCS_2012_special_262_a26,
     author = {Baryshnikov, Yu. and Hickok, L. and Orlow, N. and Son, S.},
     title = {Stokes polyhedra for $X$-shaped polyminos},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12)},
     year = {2012},
     doi = {10.46298/dmtcs.3005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3005/}
}
TY  - JOUR
AU  - Baryshnikov, Yu.
AU  - Hickok, L.
AU  - Orlow, N.
AU  - Son, S.
TI  - Stokes polyhedra for $X$-shaped polyminos
JO  - Discrete mathematics & theoretical computer science
PY  - 2012
VL  - DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3005/
DO  - 10.46298/dmtcs.3005
LA  - en
ID  - DMTCS_2012_special_262_a26
ER  - 
%0 Journal Article
%A Baryshnikov, Yu.
%A Hickok, L.
%A Orlow, N.
%A Son, S.
%T Stokes polyhedra for $X$-shaped polyminos
%J Discrete mathematics & theoretical computer science
%D 2012
%V DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3005/
%R 10.46298/dmtcs.3005
%G en
%F DMTCS_2012_special_262_a26
Baryshnikov, Yu.; Hickok, L.; Orlow, N.; Son, S. Stokes polyhedra for $X$-shaped polyminos. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12), DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12) (2012). doi : 10.46298/dmtcs.3005. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.3005/

Cité par Sources :