Asymptotics of Divide-And-Conquer Recurrences Via Iterated Function Systems
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12), DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12) (2012)
Cet article a éte moissonné depuis la source Episciences
Let $k≥2$ be a fixed integer. Given a bounded sequence of real numbers $(a_n:n≥k)$, then for any sequence $(f_n:n≥1)$ of real numbers satisfying the divide-and-conquer recurrence $f_n = (k-mod(n,k))f_⌊n/k⌋+mod(n,k)f_⌈n/k⌉ + a_n, n ≥k$, there is a unique continuous periodic function $f^*:\mathbb{R}→\mathbb{R}$ with period 1 such that $f_n = nf^*(\log _kn)+o(n)$. If $(a_n)$ is periodic with period $k, a_k=0$, and the initial conditions $(f_i:1 ≤i ≤k-1)$ are all zero, we obtain a specific iterated function system $S$, consisting of $k$ continuous functions from $[0,1]×\mathbb{R}$ into itself, such that the attractor of $S$ is $\{(x,f^*(x)): 0 ≤x ≤1\}$. Using the system $S$, an accurate plot of $f^*$ can be rapidly obtained.
@article{DMTCS_2012_special_262_a4,
author = {Kieffer, John},
title = {Asymptotics of {Divide-And-Conquer} {Recurrences} {Via} {Iterated} {Function} {Systems}},
journal = {Discrete mathematics & theoretical computer science},
year = {2012},
volume = {DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12)},
doi = {10.46298/dmtcs.2983},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2983/}
}
TY - JOUR AU - Kieffer, John TI - Asymptotics of Divide-And-Conquer Recurrences Via Iterated Function Systems JO - Discrete mathematics & theoretical computer science PY - 2012 VL - DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12) UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2983/ DO - 10.46298/dmtcs.2983 LA - en ID - DMTCS_2012_special_262_a4 ER -
%0 Journal Article %A Kieffer, John %T Asymptotics of Divide-And-Conquer Recurrences Via Iterated Function Systems %J Discrete mathematics & theoretical computer science %D 2012 %V DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12) %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2983/ %R 10.46298/dmtcs.2983 %G en %F DMTCS_2012_special_262_a4
Kieffer, John. Asymptotics of Divide-And-Conquer Recurrences Via Iterated Function Systems. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12), DMTCS Proceedings vol. AQ, 23rd Intern. Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'12) (2012). doi: 10.46298/dmtcs.2983
Cité par Sources :