3x+1 Minus the +
Discrete mathematics & theoretical computer science, Tome 5 (2002).

Voir la notice de l'article provenant de la source Episciences

We use Conway's \emphFractran language to derive a function R:\textbfZ^+ → \textbfZ^+ of the form R(n) = r_in if n ≡ i \bmod d where d is a positive integer, 0 ≤ i < d and r_0,r_1, ... r_d-1 are rational numbers, such that the famous 3x+1 conjecture holds if and only if the R-orbit of 2^n contains 2 for all positive integers n. We then show that the R-orbit of an arbitrary positive integer is a constant multiple of an orbit that contains a power of 2. Finally we apply our main result to show that any cycle \ x_0, ... ,x_m-1 \ of positive integers for the 3x+1 function must satisfy \par ∑ _i∈ \textbfE \lfloor x_i/2 \rfloor = ∑ _i∈ \textbfO \lfloor x_i/2 \rfloor +k. \par where \textbfO=\ i : x_i is odd \ , \textbfE=\ i : x_i is even \ , and k=|\textbfO|. \par The method used illustrates a general mechanism for deriving mathematical results about the iterative dynamics of arbitrary integer functions from \emphFractran algorithms.
@article{DMTCS_2002_5_a3,
     author = {Monks, Kenneth G.},
     title = {3x+1 {Minus} the +},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {5},
     year = {2002},
     doi = {10.46298/dmtcs.297},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.297/}
}
TY  - JOUR
AU  - Monks, Kenneth G.
TI  - 3x+1 Minus the +
JO  - Discrete mathematics & theoretical computer science
PY  - 2002
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.297/
DO  - 10.46298/dmtcs.297
LA  - en
ID  - DMTCS_2002_5_a3
ER  - 
%0 Journal Article
%A Monks, Kenneth G.
%T 3x+1 Minus the +
%J Discrete mathematics & theoretical computer science
%D 2002
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.297/
%R 10.46298/dmtcs.297
%G en
%F DMTCS_2002_5_a3
Monks, Kenneth G. 3x+1 Minus the +. Discrete mathematics & theoretical computer science, Tome 5 (2002). doi : 10.46298/dmtcs.297. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.297/

Cité par Sources :