Noncommutative Symmetric Hall-Littlewood Polynomials
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (2011).

Voir la notice de l'article provenant de la source Episciences

Noncommutative symmetric functions have many properties analogous to those of classical (commutative) symmetric functions. For instance, ribbon Schur functions (analogs of the classical Schur basis) expand positively in noncommutative monomial basis. More of the classical properties extend to noncommutative setting as I will demonstrate introducing a new family of noncommutative symmetric functions, depending on one parameter. It seems to be an appropriate noncommutative analog of the Hall-Littlewood polynomials.
@article{DMTCS_2011_special_260_a77,
     author = {Tevlin, Lenny},
     title = {Noncommutative {Symmetric} {Hall-Littlewood} {Polynomials}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)},
     year = {2011},
     doi = {10.46298/dmtcs.2964},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2964/}
}
TY  - JOUR
AU  - Tevlin, Lenny
TI  - Noncommutative Symmetric Hall-Littlewood Polynomials
JO  - Discrete mathematics & theoretical computer science
PY  - 2011
VL  - DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2964/
DO  - 10.46298/dmtcs.2964
LA  - en
ID  - DMTCS_2011_special_260_a77
ER  - 
%0 Journal Article
%A Tevlin, Lenny
%T Noncommutative Symmetric Hall-Littlewood Polynomials
%J Discrete mathematics & theoretical computer science
%D 2011
%V DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2964/
%R 10.46298/dmtcs.2964
%G en
%F DMTCS_2011_special_260_a77
Tevlin, Lenny. Noncommutative Symmetric Hall-Littlewood Polynomials. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (2011). doi : 10.46298/dmtcs.2964. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2964/

Cité par Sources :