Local extrema in random permutations and the structure of longest alternating subsequences
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (2011).

Voir la notice de l'article provenant de la source Episciences

Let $\textbf{as}_n$ denote the length of a longest alternating subsequence in a uniformly random permutation of order $n$. Stanley studied the distribution of $\textbf{as}_n$ using algebraic methods, and showed in particular that $\mathbb{E}(\textbf{as}_n) = (4n+1)/6$ and $\textrm{Var}(\textbf{as}_n) = (32n-13)/180$. From Stanley's result it can be shown that after rescaling, $\textbf{as}_n$ converges in the limit to the Gaussian distribution. In this extended abstract we present a new approach to the study of $\textbf{as}_n$ by relating it to the sequence of local extrema of a random permutation, which is shown to form a "canonical'' longest alternating subsequence. Using this connection we reprove the abovementioned results in a more probabilistic and transparent way. We also study the distribution of the values of the local minima and maxima, and prove that in the limit the joint distribution of successive minimum-maximum pairs converges to the two-dimensional distribution whose density function is given by $f(s,t) = 3(1-s)t e^{t-s}$.
@article{DMTCS_2011_special_260_a69,
     author = {Romik, Dan},
     title = {Local extrema in random permutations and the structure of longest alternating subsequences},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)},
     year = {2011},
     doi = {10.46298/dmtcs.2956},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2956/}
}
TY  - JOUR
AU  - Romik, Dan
TI  - Local extrema in random permutations and the structure of longest alternating subsequences
JO  - Discrete mathematics & theoretical computer science
PY  - 2011
VL  - DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2956/
DO  - 10.46298/dmtcs.2956
LA  - en
ID  - DMTCS_2011_special_260_a69
ER  - 
%0 Journal Article
%A Romik, Dan
%T Local extrema in random permutations and the structure of longest alternating subsequences
%J Discrete mathematics & theoretical computer science
%D 2011
%V DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2956/
%R 10.46298/dmtcs.2956
%G en
%F DMTCS_2011_special_260_a69
Romik, Dan. Local extrema in random permutations and the structure of longest alternating subsequences. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (2011). doi : 10.46298/dmtcs.2956. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2956/

Cité par Sources :