Skew quantum Murnaghan-Nakayama rule
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (2011).

Voir la notice de l'article provenant de la source Episciences

In this extended abstract, we extend recent results of Assaf and McNamara, the skew Pieri rule and the skew Murnaghan-Nakayama rule, to a more general identity, which gives an elegant expansion of the product of a skew Schur function with a quantum power sum function in terms of skew Schur functions. We give two proofs, one completely bijective in the spirit of Assaf-McNamara's original proof, and one via Lam-Lauve-Sotille's skew Littlewood-Richardson rule.
@article{DMTCS_2011_special_260_a49,
     author = {Konvalinka, Matja\v{z}},
     title = {Skew quantum {Murnaghan-Nakayama} rule},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)},
     year = {2011},
     doi = {10.46298/dmtcs.2936},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2936/}
}
TY  - JOUR
AU  - Konvalinka, Matjaž
TI  - Skew quantum Murnaghan-Nakayama rule
JO  - Discrete mathematics & theoretical computer science
PY  - 2011
VL  - DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2936/
DO  - 10.46298/dmtcs.2936
LA  - en
ID  - DMTCS_2011_special_260_a49
ER  - 
%0 Journal Article
%A Konvalinka, Matjaž
%T Skew quantum Murnaghan-Nakayama rule
%J Discrete mathematics & theoretical computer science
%D 2011
%V DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2936/
%R 10.46298/dmtcs.2936
%G en
%F DMTCS_2011_special_260_a49
Konvalinka, Matjaž. Skew quantum Murnaghan-Nakayama rule. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (2011). doi : 10.46298/dmtcs.2936. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2936/

Cité par Sources :