The short toric polynomial
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (2011).

Voir la notice de l'article provenant de la source Episciences

We introduce the short toric polynomial associated to a graded Eulerian poset. This polynomial contains the same information as Stanley's pair of toric polynomials, but allows different algebraic manipulations. Stanley's intertwined recurrence may be replaced by a single recurrence, in which the degree of the discarded terms is independent of the rank. A short toric variant of the formula by Bayer and Ehrenborg, expressing the toric h-vector in terms of the cd-index, may be stated in a rank-independent form, and it may be shown using weighted lattice path enumeration and the reflection principle. We use our techniques to derive a formula expressing the toric h-vector of a dual simplicial Eulerian poset in terms of its f-vector. This formula implies Gessel's formula for the toric h-vector of a cube, and may be used to prove that the nonnegativity of the toric h-vector of a simple polytope is a consequence of the Generalized Lower Bound Theorem holding for simplicial polytopes.
@article{DMTCS_2011_special_260_a40,
     author = {Hetyei, G\'abor},
     title = {The short toric polynomial},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)},
     year = {2011},
     doi = {10.46298/dmtcs.2927},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2927/}
}
TY  - JOUR
AU  - Hetyei, Gábor
TI  - The short toric polynomial
JO  - Discrete mathematics & theoretical computer science
PY  - 2011
VL  - DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2927/
DO  - 10.46298/dmtcs.2927
LA  - en
ID  - DMTCS_2011_special_260_a40
ER  - 
%0 Journal Article
%A Hetyei, Gábor
%T The short toric polynomial
%J Discrete mathematics & theoretical computer science
%D 2011
%V DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2927/
%R 10.46298/dmtcs.2927
%G en
%F DMTCS_2011_special_260_a40
Hetyei, Gábor. The short toric polynomial. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (2011). doi : 10.46298/dmtcs.2927. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2927/

Cité par Sources :