Path tableaux and combinatorial interpretations of immanants for class functions on $S_n$
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (2011).

Voir la notice de l'article provenant de la source Episciences

Let $χ ^λ$ be the irreducible $S_n$-character corresponding to the partition $λ$ of $n$, equivalently, the preimage of the Schur function $s_λ$ under the Frobenius characteristic map. Let $\phi ^λ$ be the function $S_n →ℂ$ which is the preimage of the monomial symmetric function $m_λ$ under the Frobenius characteristic map. The irreducible character immanant $Imm_λ {(x)} = ∑_w ∈S_n χ ^λ (w) x_1,w_1 ⋯x_n,w_n$ evaluates nonnegatively on each totally nonnegative matrix $A$. We provide a combinatorial interpretation for the value $Imm_λ (A)$ in the case that $λ$ is a hook partition. The monomial immanant $Imm_{{\phi} ^λ} (x) = ∑_w ∈S_n φ ^λ (w) x_1,w_1 ⋯x_n,w_n$ is conjectured to evaluate nonnegatively on each totally nonnegative matrix $A$. We confirm this conjecture in the case that $λ$ is a two-column partition by providing a combinatorial interpretation for the value $Imm_{{\phi} ^λ} (A)$.
@article{DMTCS_2011_special_260_a19,
     author = {Clearman, Sam and Shelton, Brittany and Skandera, Mark},
     title = {Path tableaux and combinatorial interpretations of immanants for class functions on $S_n$},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)},
     year = {2011},
     doi = {10.46298/dmtcs.2906},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2906/}
}
TY  - JOUR
AU  - Clearman, Sam
AU  - Shelton, Brittany
AU  - Skandera, Mark
TI  - Path tableaux and combinatorial interpretations of immanants for class functions on $S_n$
JO  - Discrete mathematics & theoretical computer science
PY  - 2011
VL  - DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2906/
DO  - 10.46298/dmtcs.2906
LA  - en
ID  - DMTCS_2011_special_260_a19
ER  - 
%0 Journal Article
%A Clearman, Sam
%A Shelton, Brittany
%A Skandera, Mark
%T Path tableaux and combinatorial interpretations of immanants for class functions on $S_n$
%J Discrete mathematics & theoretical computer science
%D 2011
%V DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2906/
%R 10.46298/dmtcs.2906
%G en
%F DMTCS_2011_special_260_a19
Clearman, Sam; Shelton, Brittany; Skandera, Mark. Path tableaux and combinatorial interpretations of immanants for class functions on $S_n$. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) (2011). doi : 10.46298/dmtcs.2906. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2906/

Cité par Sources :