Zonotopes, toric arrangements, and generalized Tutte polynomials
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (2010).

Voir la notice de l'article provenant de la source Episciences

We introduce a multiplicity Tutte polynomial $M(x,y)$, which generalizes the ordinary one and has applications to zonotopes and toric arrangements. We prove that $M(x,y)$ satisfies a deletion-restriction recurrence and has positive coefficients. The characteristic polynomial and the Poincaré polynomial of a toric arrangement are shown to be specializations of the associated polynomial $M(x,y)$, likewise the corresponding polynomials for a hyperplane arrangement are specializations of the ordinary Tutte polynomial. Furthermore, $M(1,y)$ is the Hilbert series of the related discrete Dahmen-Micchelli space, while $M(x,1)$ computes the volume and the number of integral points of the associated zonotope.
@article{DMTCS_2010_special_259_a73,
     author = {Moci, Luca},
     title = {Zonotopes, toric arrangements, and generalized {Tutte} polynomials},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)},
     year = {2010},
     doi = {10.46298/dmtcs.2878},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2878/}
}
TY  - JOUR
AU  - Moci, Luca
TI  - Zonotopes, toric arrangements, and generalized Tutte polynomials
JO  - Discrete mathematics & theoretical computer science
PY  - 2010
VL  - DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2878/
DO  - 10.46298/dmtcs.2878
LA  - en
ID  - DMTCS_2010_special_259_a73
ER  - 
%0 Journal Article
%A Moci, Luca
%T Zonotopes, toric arrangements, and generalized Tutte polynomials
%J Discrete mathematics & theoretical computer science
%D 2010
%V DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2878/
%R 10.46298/dmtcs.2878
%G en
%F DMTCS_2010_special_259_a73
Moci, Luca. Zonotopes, toric arrangements, and generalized Tutte polynomials. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (2010). doi : 10.46298/dmtcs.2878. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2878/

Cité par Sources :