QSym over Sym has a stable basis
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (2010) Cet article a éte moissonné depuis la source Episciences

Voir la notice de l'article

We prove that the subset of quasisymmetric polynomials conjectured by Bergeron and Reutenauer to be a basis for the coinvariant space of quasisymmetric polynomials is indeed a basis. This provides the first constructive proof of the Garsia―Wallach result stating that quasisymmetric polynomials form a free module over symmetric polynomials and that the dimension of this module is $n!$.
@article{DMTCS_2010_special_259_a61,
     author = {Lauve, Aaron and Mason, Sarah K},
     title = {QSym over {Sym} has a stable basis},
     journal = {Discrete mathematics & theoretical computer science},
     year = {2010},
     volume = {DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)},
     doi = {10.46298/dmtcs.2866},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2866/}
}
TY  - JOUR
AU  - Lauve, Aaron
AU  - Mason, Sarah K
TI  - QSym over Sym has a stable basis
JO  - Discrete mathematics & theoretical computer science
PY  - 2010
VL  - DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2866/
DO  - 10.46298/dmtcs.2866
LA  - en
ID  - DMTCS_2010_special_259_a61
ER  - 
%0 Journal Article
%A Lauve, Aaron
%A Mason, Sarah K
%T QSym over Sym has a stable basis
%J Discrete mathematics & theoretical computer science
%D 2010
%V DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2866/
%R 10.46298/dmtcs.2866
%G en
%F DMTCS_2010_special_259_a61
Lauve, Aaron; Mason, Sarah K. QSym over Sym has a stable basis. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (2010). doi: 10.46298/dmtcs.2866

Cité par Sources :