QSym over Sym has a stable basis
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (2010)
Cet article a éte moissonné depuis la source Episciences
We prove that the subset of quasisymmetric polynomials conjectured by Bergeron and Reutenauer to be a basis for the coinvariant space of quasisymmetric polynomials is indeed a basis. This provides the first constructive proof of the Garsia―Wallach result stating that quasisymmetric polynomials form a free module over symmetric polynomials and that the dimension of this module is $n!$.
@article{DMTCS_2010_special_259_a61,
author = {Lauve, Aaron and Mason, Sarah K},
title = {QSym over {Sym} has a stable basis},
journal = {Discrete mathematics & theoretical computer science},
year = {2010},
volume = {DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)},
doi = {10.46298/dmtcs.2866},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2866/}
}
TY - JOUR AU - Lauve, Aaron AU - Mason, Sarah K TI - QSym over Sym has a stable basis JO - Discrete mathematics & theoretical computer science PY - 2010 VL - DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2866/ DO - 10.46298/dmtcs.2866 LA - en ID - DMTCS_2010_special_259_a61 ER -
%0 Journal Article %A Lauve, Aaron %A Mason, Sarah K %T QSym over Sym has a stable basis %J Discrete mathematics & theoretical computer science %D 2010 %V DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2866/ %R 10.46298/dmtcs.2866 %G en %F DMTCS_2010_special_259_a61
Lauve, Aaron; Mason, Sarah K. QSym over Sym has a stable basis. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (2010). doi: 10.46298/dmtcs.2866
Cité par Sources :