Counting unicellular maps on non-orientable surfaces
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (2010).

Voir la notice de l'article provenant de la source Episciences

A unicellular map is the embedding of a connected graph in a surface in such a way that the complement of the graph is a topological disk. In this paper we give a bijective operation that relates unicellular maps on a non-orientable surface to unicellular maps of a lower topological type, with distinguished vertices. From that we obtain a recurrence equation that leads to (new) explicit counting formulas for non-orientable precubic (all vertices of degree 1 or 3) unicellular maps of fixed topology. We also determine asymptotic formulas for the number of all unicellular maps of fixed topology, when the number of edges goes to infinity. Our strategy is inspired by recent results obtained for the orientable case [Chapuy, PTRF 2010], but significant novelties are introduced: in particular we construct an involution which, in some sense, ``averages'' the effects of non-orientability. \par
@article{DMTCS_2010_special_259_a54,
     author = {Bernardi, Olivier and Chapuy, Guillaume},
     title = {Counting unicellular maps on non-orientable surfaces},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)},
     year = {2010},
     doi = {10.46298/dmtcs.2859},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2859/}
}
TY  - JOUR
AU  - Bernardi, Olivier
AU  - Chapuy, Guillaume
TI  - Counting unicellular maps on non-orientable surfaces
JO  - Discrete mathematics & theoretical computer science
PY  - 2010
VL  - DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2859/
DO  - 10.46298/dmtcs.2859
LA  - en
ID  - DMTCS_2010_special_259_a54
ER  - 
%0 Journal Article
%A Bernardi, Olivier
%A Chapuy, Guillaume
%T Counting unicellular maps on non-orientable surfaces
%J Discrete mathematics & theoretical computer science
%D 2010
%V DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2859/
%R 10.46298/dmtcs.2859
%G en
%F DMTCS_2010_special_259_a54
Bernardi, Olivier; Chapuy, Guillaume. Counting unicellular maps on non-orientable surfaces. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (2010). doi : 10.46298/dmtcs.2859. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2859/

Cité par Sources :