Generalized Ehrhart polynomials
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (2010).

Voir la notice de l'article provenant de la source Episciences

Let $P$ be a polytope with rational vertices. A classical theorem of Ehrhart states that the number of lattice points in the dilations $P(n) = nP$ is a quasi-polynomial in $n$. We generalize this theorem by allowing the vertices of $P(n)$ to be arbitrary rational functions in $n$. In this case we prove that the number of lattice points in $P(n)$ is a quasi-polynomial for $n$ sufficiently large. Our work was motivated by a conjecture of Ehrhart on the number of solutions to parametrized linear Diophantine equations whose coefficients are polynomials in $n$, and we explain how these two problems are related.
@article{DMTCS_2010_special_259_a52,
     author = {Chen, Sheng and Li, Nan and Sam, Steven V},
     title = {Generalized {Ehrhart} polynomials},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)},
     year = {2010},
     doi = {10.46298/dmtcs.2857},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2857/}
}
TY  - JOUR
AU  - Chen, Sheng
AU  - Li, Nan
AU  - Sam, Steven V
TI  - Generalized Ehrhart polynomials
JO  - Discrete mathematics & theoretical computer science
PY  - 2010
VL  - DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2857/
DO  - 10.46298/dmtcs.2857
LA  - en
ID  - DMTCS_2010_special_259_a52
ER  - 
%0 Journal Article
%A Chen, Sheng
%A Li, Nan
%A Sam, Steven V
%T Generalized Ehrhart polynomials
%J Discrete mathematics & theoretical computer science
%D 2010
%V DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2857/
%R 10.46298/dmtcs.2857
%G en
%F DMTCS_2010_special_259_a52
Chen, Sheng; Li, Nan; Sam, Steven V. Generalized Ehrhart polynomials. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (2010). doi : 10.46298/dmtcs.2857. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2857/

Cité par Sources :