Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2010_special_259_a22, author = {Rhoades, Brendon}, title = {The cluster and dual canonical bases of {Z} [x_11, ..., x_33] are equal}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)}, year = {2010}, doi = {10.46298/dmtcs.2827}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2827/} }
TY - JOUR AU - Rhoades, Brendon TI - The cluster and dual canonical bases of Z [x_11, ..., x_33] are equal JO - Discrete mathematics & theoretical computer science PY - 2010 VL - DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2827/ DO - 10.46298/dmtcs.2827 LA - en ID - DMTCS_2010_special_259_a22 ER -
%0 Journal Article %A Rhoades, Brendon %T The cluster and dual canonical bases of Z [x_11, ..., x_33] are equal %J Discrete mathematics & theoretical computer science %D 2010 %V DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2827/ %R 10.46298/dmtcs.2827 %G en %F DMTCS_2010_special_259_a22
Rhoades, Brendon. The cluster and dual canonical bases of Z [x_11, ..., x_33] are equal. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (2010). doi : 10.46298/dmtcs.2827. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2827/
Cité par Sources :