Sums of Digits, Overlaps, and Palindromes
Discrete mathematics & theoretical computer science, Tome 4 (2000-2001) no. 1.

Voir la notice de l'article provenant de la source Episciences

Let s_k(n) denote the sum of the digits in the base-k representation of n. In a celebrated paper, Thue showed that the infinite word (s_2(n) \bmod 2)_n≥ 0 is \emphoverlap-free, i.e., contains no subword of the form axaxa where x is any finite word and a is a single symbol. Let k,m be integers with k>2, m≥ 1. In this paper, generalizing Thue's result, we prove that the infinite word t_k,m := (s_k(n) \bmod m)_n≥ 0 is overlap-free if and only if m≥ k. We also prove that t_k,m contains arbitrarily long squares (i.e., subwords of the form xx where x is nonempty), and contains arbitrarily long palindromes if and only if m≤ 2.
@article{DMTCS_2000_4_1_a5,
     author = {Allouche, Jean-Paul and Shallit, Jeffrey},
     title = {Sums of {Digits,} {Overlaps,} and {Palindromes}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2000-2001},
     doi = {10.46298/dmtcs.282},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.282/}
}
TY  - JOUR
AU  - Allouche, Jean-Paul
AU  - Shallit, Jeffrey
TI  - Sums of Digits, Overlaps, and Palindromes
JO  - Discrete mathematics & theoretical computer science
PY  - 2000-2001
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.282/
DO  - 10.46298/dmtcs.282
LA  - en
ID  - DMTCS_2000_4_1_a5
ER  - 
%0 Journal Article
%A Allouche, Jean-Paul
%A Shallit, Jeffrey
%T Sums of Digits, Overlaps, and Palindromes
%J Discrete mathematics & theoretical computer science
%D 2000-2001
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.282/
%R 10.46298/dmtcs.282
%G en
%F DMTCS_2000_4_1_a5
Allouche, Jean-Paul; Shallit, Jeffrey. Sums of Digits, Overlaps, and Palindromes. Discrete mathematics & theoretical computer science, Tome 4 (2000-2001) no. 1. doi : 10.46298/dmtcs.282. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.282/

Cité par Sources :