Linear coefficients of Kerov's polynomials: bijective proof and refinement of Zagier's result
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (2010).

Voir la notice de l'article provenant de la source Episciences

We look at the number of permutations $\beta$ of $[N]$ with $m$ cycles such that $(1 2 \ldots N) \beta^{-1}$ is a long cycle. These numbers appear as coefficients of linear monomials in Kerov's and Stanley's character polynomials. D. Zagier, using algebraic methods, found an unexpected connection with Stirling numbers of size $N+1$. We present the first combinatorial proof of his result, introducing a new bijection between partitioned maps and thorn trees. Moreover, we obtain a finer result, which takes the type of the permutations into account.
@article{DMTCS_2010_special_259_a10,
     author = {F\'eray, Valentin and Vassilieva, Ekaterina A.},
     title = {Linear coefficients of {Kerov's} polynomials: bijective proof and refinement of {Zagier's} result},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)},
     year = {2010},
     doi = {10.46298/dmtcs.2815},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2815/}
}
TY  - JOUR
AU  - Féray, Valentin
AU  - Vassilieva, Ekaterina A.
TI  - Linear coefficients of Kerov's polynomials: bijective proof and refinement of Zagier's result
JO  - Discrete mathematics & theoretical computer science
PY  - 2010
VL  - DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2815/
DO  - 10.46298/dmtcs.2815
LA  - en
ID  - DMTCS_2010_special_259_a10
ER  - 
%0 Journal Article
%A Féray, Valentin
%A Vassilieva, Ekaterina A.
%T Linear coefficients of Kerov's polynomials: bijective proof and refinement of Zagier's result
%J Discrete mathematics & theoretical computer science
%D 2010
%V DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2815/
%R 10.46298/dmtcs.2815
%G en
%F DMTCS_2010_special_259_a10
Féray, Valentin; Vassilieva, Ekaterina A. Linear coefficients of Kerov's polynomials: bijective proof and refinement of Zagier's result. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010) (2010). doi : 10.46298/dmtcs.2815. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2815/

Cité par Sources :