The height of scaled attachment random recursive trees
Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10) (2010).

Voir la notice de l'article provenant de la source Episciences

We study depth properties of a general class of random recursive trees where each node $n$ attaches to the random node $\lfloor nX_n \rfloor$ and $X_0, \ldots , X_n$ is a sequence of i.i.d. random variables taking values in $[0,1)$. We call such trees scaled attachment random recursive trees (SARRT). We prove that the height $H_n$ of a SARRT is asymptotically given by $H_n \sim \alpha_{\max} \log n$ where $\alpha_{\max}$ is a constant depending only on the distribution of $X_0$ whenever $X_0$ has a bounded density. This gives a new elementary proof for the height of uniform random recursive trees $H_n \sim e \log n$ that does not use branching random walks.
@article{DMTCS_2010_special_258_a24,
     author = {Devroye, Luc and Fawzi, Omar and Fraiman, Nicolas},
     title = {The height of scaled attachment random recursive trees},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)},
     year = {2010},
     doi = {10.46298/dmtcs.2788},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2788/}
}
TY  - JOUR
AU  - Devroye, Luc
AU  - Fawzi, Omar
AU  - Fraiman, Nicolas
TI  - The height of scaled attachment random recursive trees
JO  - Discrete mathematics & theoretical computer science
PY  - 2010
VL  - DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2788/
DO  - 10.46298/dmtcs.2788
LA  - en
ID  - DMTCS_2010_special_258_a24
ER  - 
%0 Journal Article
%A Devroye, Luc
%A Fawzi, Omar
%A Fraiman, Nicolas
%T The height of scaled attachment random recursive trees
%J Discrete mathematics & theoretical computer science
%D 2010
%V DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2788/
%R 10.46298/dmtcs.2788
%G en
%F DMTCS_2010_special_258_a24
Devroye, Luc; Fawzi, Omar; Fraiman, Nicolas. The height of scaled attachment random recursive trees. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10) (2010). doi : 10.46298/dmtcs.2788. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2788/

Cité par Sources :