Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2010_special_258_a15, author = {Munsonius, G\"otz Olaf}, title = {The total {Steiner} $k$-distance for $b$-ary recursive trees and linear recursive trees}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)}, year = {2010}, doi = {10.46298/dmtcs.2779}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2779/} }
TY - JOUR AU - Munsonius, Götz Olaf TI - The total Steiner $k$-distance for $b$-ary recursive trees and linear recursive trees JO - Discrete mathematics & theoretical computer science PY - 2010 VL - DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10) PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2779/ DO - 10.46298/dmtcs.2779 LA - en ID - DMTCS_2010_special_258_a15 ER -
%0 Journal Article %A Munsonius, Götz Olaf %T The total Steiner $k$-distance for $b$-ary recursive trees and linear recursive trees %J Discrete mathematics & theoretical computer science %D 2010 %V DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10) %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2779/ %R 10.46298/dmtcs.2779 %G en %F DMTCS_2010_special_258_a15
Munsonius, Götz Olaf. The total Steiner $k$-distance for $b$-ary recursive trees and linear recursive trees. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10) (2010). doi : 10.46298/dmtcs.2779. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2779/
Cité par Sources :