Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2010_special_258_a14, author = {Panholzer, Alois and Seitz, Georg}, title = {Ordered increasing $k$-trees: {Introduction} and analysis of a preferential attachment network model}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10)}, year = {2010}, doi = {10.46298/dmtcs.2778}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2778/} }
TY - JOUR AU - Panholzer, Alois AU - Seitz, Georg TI - Ordered increasing $k$-trees: Introduction and analysis of a preferential attachment network model JO - Discrete mathematics & theoretical computer science PY - 2010 VL - DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10) PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2778/ DO - 10.46298/dmtcs.2778 LA - en ID - DMTCS_2010_special_258_a14 ER -
%0 Journal Article %A Panholzer, Alois %A Seitz, Georg %T Ordered increasing $k$-trees: Introduction and analysis of a preferential attachment network model %J Discrete mathematics & theoretical computer science %D 2010 %V DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10) %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2778/ %R 10.46298/dmtcs.2778 %G en %F DMTCS_2010_special_258_a14
Panholzer, Alois; Seitz, Georg. Ordered increasing $k$-trees: Introduction and analysis of a preferential attachment network model. Discrete mathematics & theoretical computer science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10) (2010). doi : 10.46298/dmtcs.2778. http://geodesic.mathdoc.fr/articles/10.46298/dmtcs.2778/
Cité par Sources :